# Computer Graphics III Spherical integrals, Light \& Radiometry - Exercises 

Jaroslav Křivánek, MFF UK
Jaroslav.Krivanek@mff.cuni.cz

## Surface area of a (subset of a) sphere

- Calculate the surface area of a unit sphere.
- Calculate the surface area of a spherical cap delimited by the angle $\theta_{0}$ measured from the north pole.
- Calculate the surface area of a spherical wedge with angle $\phi_{0}$.


## Solid angle

- What is the solid angle under which we observe an (infinite) plane from a point outside of the plane?
- Calculate the solid angle under which we observe a sphere with radius $R$, the center of which is at the distance D from the observer.


## Isotropic point light

- Q: What is the emitted power (flux) of an isotropic point light source with intensity that is a constant I in all directions?


## Isotropic point light

- A: Total flux:

$$
\begin{aligned}
\Phi & =\int_{\Omega} I(\omega) \mathrm{d} \omega=\left|\begin{array}{c}
\text { substitute : } \\
\mathrm{d} \omega=\sin \theta \mathrm{d} \theta \mathrm{~d} \varphi
\end{array}\right| \\
& =I \int_{\varphi=0}^{2 \pi} \int_{\theta=0}^{\pi} \sin \theta \mathrm{d} \theta \mathrm{~d} \varphi \\
& =I 2 \pi[-\cos \theta]_{0}^{\pi} \\
& =4 \pi I \\
& I=\frac{\Phi}{4 \pi}
\end{aligned}
$$



## Cosine spot light

- What is the power (flux) of a point source with radiant intensity given by:

$$
I(\omega)=I_{0} \max \{0, \omega \cdot \vec{d}\}^{s}
$$



## Spotlight with linear angular fall-off

- What is the power (flux) of a point light source with radiant intensity given by:

$$
I(\theta, \phi)= \begin{cases}I_{0} & \theta \leq \alpha \\ I_{0} \frac{\beta-\theta}{\beta-\alpha} & \alpha<\theta<\beta \\ 0 & \theta \geq \beta\end{cases}
$$

Constant part

$$
\Phi_{1}=\int_{0}^{2 \pi} \int_{0}^{\alpha} I_{0} \sin \theta d \theta d \phi=I_{0} 2 \pi(1-\cos \alpha) .
$$

## Linear part

$$
\begin{equation*}
\Phi_{2}=\int_{0}^{2 \pi} \int_{\alpha}^{\beta} I_{0} \frac{\beta-\theta}{\beta-\alpha} \sin \theta d \theta d \phi=I_{0} \frac{2 \pi}{\beta-\alpha} \int_{\alpha}^{\beta}(\beta-\theta) \sin \theta d \theta \tag{1}
\end{equation*}
$$

The last integral is the sum of the following two integrals:

$$
\begin{gather*}
\int_{\alpha}^{\beta} \beta \sin \theta d \theta=\beta \cos \alpha-\beta \cos \beta  \tag{2}\\
-\int_{\alpha}^{\beta} \theta \sin \theta d \theta=|\sin \theta-\theta \cos \theta|_{\beta}^{\alpha}=\sin \alpha-\alpha \cos \alpha-\sin \beta+\beta \cos \beta \tag{3}
\end{gather*}
$$

Plugging (2) and (3) into (1) and rearranging, we get

$$
\begin{equation*}
\Phi_{2}=I_{0} \frac{2 \pi}{\beta-\alpha}[(\beta-\alpha) \cos \alpha+\sin \alpha-\sin \beta]=I_{0} 2 \pi\left[\cos \alpha-\frac{\sin \beta-\sin \alpha}{\beta-\alpha}\right] . \tag{4}
\end{equation*}
$$

## Total flux

$$
\begin{equation*}
\Phi=\Phi_{1}+\Phi_{2}=I_{0} 2 \pi\left[1-\frac{\sin \beta-\sin \alpha}{\beta-\alpha}\right] \tag{5}
\end{equation*}
$$

## Irradiance due to a Lambertian light source

- What is the irradiance $E(\mathbf{x})$ at point $\mathbf{x}$ due to a uniform Lambertian area source observed from point $\mathbf{x}$ under the solid angle $\Omega$ ?


## Uniform Area Source



## How dark are outdoor shadows?

- luminance arriving on a surface from a full (overhead) sun is $300,000 \times$ luminance arriving from the blue sky, but the sun occupies only a small fraction of the sky
+ illuminance on a sunny day $=80 \%$ from the sun $+20 \%$ from blue sky, so shadows are $1 / 5$ as bright as lit areas ( $2.3 \mathrm{f} /$ stops)

Based in these hints, calculate the solid angle under which we observe the Sun. (We assume the Sun is at the zenith.)


RAW, linearly boosted

## Irradiance due to a point source

- What is the irradiance at point $\mathbf{x}$ on a plane due to a point source with intensity $\mathrm{I}(\omega)$ placed at the height h above the plane.
- The segment connecting point $\mathbf{x}$ to the light position $\mathbf{p}$ makes the angle $\theta$ with the normal of the plane.


## Irradiance due to a point source

- Irradiance of a point on a plane lit by a point source:

$$
\begin{aligned}
E(\mathbf{x}) & =\frac{d \Phi(\mathbf{x})}{d A} \\
& =\frac{I(\mathbf{p} \rightarrow \mathbf{x}) d \omega}{d A} \\
& =I(\mathbf{p} \rightarrow \mathbf{x}) \frac{\cos \theta}{\|\mathbf{p}-\mathbf{x}\|^{2}} \\
& =I(\mathbf{p} \rightarrow \mathbf{x}) \frac{\cos ^{3} \theta}{h^{2}}
\end{aligned}
$$



## Area light sources

- Emission of an area light source is fully described by the emitted radiance $\mathrm{L}_{\mathrm{e}}(\mathbf{x}, \omega)$ for all positions on the source $\mathbf{x}$ and all directions $\omega$.
- The total emitted power (flux) is given by an integral of $\mathrm{L}_{\mathrm{e}}(\mathbf{x}, \omega)$ over the surface of the light source and all directions.

$$
\Phi=\int_{A} \int_{H(\mathbf{x})} L_{e}(\mathbf{x}, \omega) \cos \theta \mathrm{d} \omega \mathrm{~d} A
$$

## Diffuse (Lambertian) light source

- What is the relationship between the emitted radiant exitance (radiosity) $\mathrm{B}_{\mathrm{e}}(\mathbf{x})$ and emitted radiance $\mathrm{L}_{\mathrm{e}}(\mathbf{x}, \omega)$ for a Lambertian area light source?

Lambertian source $=$
emitted radiance does not depend on the direction $\omega$

$$
\mathrm{L}_{\mathrm{e}}(\mathbf{x}, \omega)=\mathrm{L}_{\mathrm{e}}(\mathbf{x}) .
$$

## Diffuse (Lambertian) light source

- $\mathrm{L}_{\mathrm{e}}(\mathbf{x}, \omega)$ is constant in $\omega$
- Radiosity: $\mathrm{B}_{\mathrm{e}}(\mathbf{x})=\pi \mathrm{L}_{\mathrm{e}}(\mathbf{x})$

$$
\begin{aligned}
B_{e}(\mathbf{x}) & =\int_{H(\mathbf{x})} L_{e}(\mathbf{x}, \omega) \cos \theta \mathrm{d} \omega \\
& =L_{e}(\mathbf{x}) \int_{H(\mathbf{x})} \cos \theta \mathrm{d} \omega \\
& =\pi L_{e}(\mathbf{x})
\end{aligned}
$$

## Uniform Lambertian light source

- What is the total emitted power (flux) $\Phi$ of a uniform Lambertian area light source which emits radiance $L_{e}$
- Uniform source - radiance does not depend on the position, $\mathrm{L}_{\mathrm{e}}(\mathbf{x}, \omega)=\mathrm{L}_{\mathrm{e}}=$ const.


## Uniform Lambertian light source

- $\mathrm{L}_{\mathrm{e}}(\mathbf{x}, \omega)$ is constant in $\mathbf{x}$ and $\boldsymbol{\omega}$

$$
\Phi_{\mathbf{e}}=\mathbf{A} \mathbf{B}_{\mathbf{e}}=\pi \mathbf{A} \mathbf{L}_{\mathbf{e}}
$$

